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The eigenvalues and eigenfunctions of the Hilbert operator have been evaluated as part 
of a technique for solving Boltzmann’s equation for a gas model consisting of rigid spheres. 
The numerical method for their evaluation is presented as well as a small sample of the 
results. 

1. INTRODUCTION 

We have proposed (see [lo, 121) a new, very fast numerical method for solving 
Boltzmann’s equation for a gas model consisting of rigid spheres by means of Hilbert’s 
expansion. Using Hilbert’s expansion, Boltzmann’s equation reduces to a sequence of 
integral equations. The success of the method rests upon the simultaneous use of four 
judiciously chosen expansions; Hilbert’s expansion for the distribution function, 
another expansion of the distribution function in terms of Hermite polynomials, 
the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the 
Hilbert operator, and an expansion involved in solving a system of linear equations 
through a singular value decomposition. The time required to compute the eigenvalues 
and eigenfunctions is great, however, one need compute these only once; see [lo, 121. 

Boltzmann’s equation describes the evolution of the one-particle distribution 
function f = f(x, u, t), where x is the position vector, u is the velocity vector, and c is 
time. In the case of a gas model consisting of rigid spheres of diameter u and in the 
absence of external forces it takes the form 

where V = u - ur , V, denotes the gradient operator with respect to the x variables, 
the primes refer to molecules which enter the element of volume after collision, and 
boldface type denotes vector quantities. 

In solving Boltzmann’s equation by means of Hilbert’s expansion (see [6, 10, 12)] 
retaining only the first two terms, Boltzmann’s equation reduces to the Boltzmann- 
Hilbert integral equation 

- 9 %J = M(p) e-““+@) + q ,- &J1) ~-PI’ (R - ; &) dp,, (2) 
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where 

f = a1 + #,P f. = p(2ngg77-3i3 e-~z, p = u(2m-)-~~~, 

M(p) = 1 + (2p + +j ep2 jop e+* dz, PPl w = R sin 0, 

(3) 

(4) 

p denotes the density, T the temperature, g the universal gas constant, R = 1 p1 - p 1, 
and 0 denotes the angle between p and p1 . Successive terms in the Hilbert expansion 
are obtained by solving the integral equation with a different source term. 

Let 4(p) = e-““M(p)‘/“+(p); then Eq. (2) may be written in the form 

-&~~WJ~P~) ep2MpY2 % = $0) + (l/4 j K@, PJ #h) dp, 

= 4(P) + (W ~$3 
(5) 

where 

K(P, ~1) = (R - (2/R) e”‘)]J@4 ~hF2, (6) 

and X denotes the Hilbert operator; see [9, lo]. 

2. EIGENVALLJES AND EIGENFUNCTIONS 

The eigenvalues and eigenfunctions of the linearized Boltzmann collision operator 
for a Maxwellian gas have been extensively studied by Burnett [2, 31, Mott-Smith [8], 
and Wang-Chang and Uhlenbeck [13]. It has been shown that the eigenfunctions are 

where 

WP) = ~T&(COS 0) PzL:+1’2(P2), 

I 
112 

(7) 

is a normalization factor with respect to the weight e- pa, L:+l12 denotes the associated 
Laguerre polynomial and Pz the Legendre polynomial; see [7]. Dependence on the 
azimuthal angle 4 can be included by replacing P,(cos 0) by ei”“Py(cos @, and the 
eigenvalues are independent of m. 

We determine the eigenvalues ;dz and the eigenfunctions #rz satisfying the integral 
equation 

AZ@> = &z/4 j NIP9 PA #rz6?3 dP1 * (8) 

Equation (8) is solved using a method introduced by Wang-Chang and Uhlenbeck 
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[13] and also by Pekeris et al. [9]; expand I/ (dropping the subscripts) in a complete 
set of orthonormal functions {h,(p)}, i.e., 

(9) 

following the Gale&ins method, in which we require that the error term be orthogonal 
to these functions hi ; see [4]. Upon substitution of (9) into (8) we obtain 

The sum in (10) has to be orthogonal to each base function h&), thus 

z ai [(W jj Qz4 PA Mh) h,(p) 414 - j h(P) hk@) dp] = 0. (11) 
Equation (11) represents a system of linear equations, the vanishing of whose deter- 
minant yields the eigenvalues A,., and the eigenvectors art for the expansion in (11). 

For orthogonal family we choose {exp(-p2)M(p)1/2@irl,&)}, i.e., 

hd10 = exp(-p2)~(p>1’2~7~,(p) (12) 

where Qrlnz is given by (7). Thus 

&&p) = exp(im+) Ptm(cos 0) exp(-p”) M(P)~‘~ p’ i a,lkL~+1’2(p2). (13) 
k=O 

Upon the explicit substitution of (13) into (11) we obtain 

i w GM (R - (2/R) ew3 ev(-p2 - p12) @pp~8W @,dH 4h & 
V.Z’=O I J-1 

- j exp(--2p3 M(P) @d10 %dN dp1 = 0, (14) 

where Q7r denotes Qbrto, for when Z is applied to a function of the form g(p2) 
P,“(cos 0) ei”* the result is of the form gl(p2) Ptm(cos 0) eim*, where gl(p2) does 
not depend on m, see [ 131. 

We define the Chapman brackets [rl, r’l] by 

[rl, r’l] = u2 .[7c2 jj dp dpr K(P, PAW(P) WP~)I’/~ e&-p2 - P?) @APT) WP) 

+ n---l j 4 ew(--2p2) M(P) %JZ(P> @API/. (15) 
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TABLE 

Eigenvalues /\,, and Coefficients of the Expansion a,lk in 

I 
r 

Eigenvalue -1.00000000 00 -1.00000000 00 -1.57971633 00 -2.13148483 00 

Coefficient 
k 

Y 
2 

4" 
5 
6 

-1.23105631 -01 
-1.74633757 -01 

0. 

i: 

i: 
0. 

;: 
0. 

0": 
0. 

i: 
0. 
0. 
0. 
0. 

2.24622114 -01 1.85468841 -02 
-5.80200252 -02 5.16782156 -02 

0. 

2 

i: 

1.85265673 -01 
-1.90086175 -02 
-4.86154072 -03 
-1.80348774 -03 
-7.77615594 -04 
-3.65746476 -04 
-1.82671270 -04 
-9.55486179 -05 
-5.19195077 -05 
-2.91547182 -95 
-1.68549791 -05 
-1.00026427 -05 
-6.07856424 -06 

-1.05490921 -02 
-2.76991339 -01 
-7.42274434 -02 
-1.79391206 -01 

3.60149896 -02 
8.86770647 -03 
3.31439714 -03 
1.44412287 -03 
6.83833948 -04 
3.42037854 -04 
1.78209107 -04 
9.59937056 -05 
5.32239471 -05 
3.02923580 -05 
1.76646364 -05 
1.05387214 -05 
6.42424599 -06 
3.99634193 -06 
2.53370287 -06 
1.63506431 -06 
1.07257776 -06 

23 

;: 
26 
27 
28 
29 

i: 
0. 
0. 
0. 
0. 
0. 
0. 

i: 

0 
1 

0. 
0. 
0. 

i: 

:: 
0. 
0. 
0. 

i: 
0. 
0. 
0. 
0. 
0. 

i: 
0. 

0": 
0. 

0 
2 

-3.77441030 -06 
-2.39008582 -06 
-1.54072249 -06 
-1.00944185 -06 
-6.71196751 -07 
-4.52334524 -07 
-3.08604103 -07 
-2.12923421 -07 
-1.48431065 -07 
-1.04460592 -07 
-7.41642427 -08 
-5.30854374 -08 
-3.82869470 -08 
-2.78101567 -08 
-2.03347905 -08 

0 
3 

7.14289559 -07 
4.82313642 -07 
3.29826023 -07 
2.28176310 -07 
1.59536429 -07 
1.12634197 -07 
8.02345572 -08 
5.76278465 -08 
4.17078078 -08 

The Chapman brackets were evaluated by Mott-Smith [8], yielding 

,2(2,)1/2 p)! min(r.r') 1 

Erzv r”‘] = ‘Up r(/ + Q) ‘Jv+r’+32 nzo mio 
4”r(l- m + r + r’ - 2n - l/2) B,” 

(r - n)! (r’ - n)! (I - m)! 

where 
(16) 

B,” = 0, m=n=O 
= (m + 2n + I)! _ 2+l(m + n + I)! (17) 

(2n + l)! m! n! m! 3 otherwise. 

Upon substitution of (15) into (14) we obtain 
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I 

Eq. (13) for the Eigenfunctions of the Hilbert Operator 

1 
r 

Eigenvalue 

Coefficient 
k 
0 
1 
2 
3 
4 
5 

8 

1: 
11 
12 
13 
14 
15 

1; 
18 
19 
20 
21 

;: 
24 
25 
26 
27 

1 
0 

-1.00000000 00 

3.29918525 -01 
0. 

i: 

i: 

i: 
0. 
0. 
0. 
0. 
0. 

i: 
0. 

i: 
0. 
0. 
0. 

i: 
0. 

i: 
0. 
0. 
0. 
0. 

1 
1 

-1.62519664 00 -2.17741228 00 -2.71692051 00 

-7.36282872 -02 

4.79475825 -03 
1.40884669 -03 

-2.33375759 -01 

5.06508115 -04 
2.05059445 -04 

2.66181162 -02 

9.01613924 -05 
4.22369454 -05 
2.08404543 -05 
1.07485947 -05 
5.76255266 -06 
3.19739833 -06 
1.82938709 -06 
1.07585873 -06 
6.48506622 -07 
3.99653199 -07 
2.51235923 -07 
1.60783479 -07 
1.04567851 -07 
6.90054481 -08 
4.61438949 -08 
3.12308558 -08 
2.13723032 -08 
1.47751655 -08 
1.03107685 -08 
7.25825831 -09 
5.15105600 -09 
3.68342245 -09 
2.65272558 -09 

2 

3.97419952 -02 

-3.88397730 -02 

7.24944098 -03 
2.22605556 -03 

-9.52260026 -02 

8.26920710 -04 
3.41139613 -04 

-1.80247805 -01 

1.50896408 -04 
7.03270659 -05 
3.42060120 -05 
1.72659582 -05 
9.01338362 -06 
4.85497447 -06 
2.69349488 -06 
1.53668412 -06 
9.00112335 -07 
5.40400338 -07 
3.31940865 -07 
2.08221678 -07 
1.33139417 -07 
8.66216853 -08 
5.72478906 -08 
3.83744795 -08 
2.60545102 -08 
1.78960977 -08 
1.24226111 -08 
8.70664927 -09 
6.15645019 -09 
4.38888364 -09 

1 
3 

2.41828476 -02 
5.53755023 -02 
9.27265299 -02 
1.44984584 -01 

-4.83243446 -02 
-8.61713895 -03 
-2.70715533 -03 
-1.02520388 -03 
-4.27205654 -04 
-1.88820156 -04 
-8.69251791 -05 
-4.12658843 -05 
-2.00864770 -05 

.-9.99289312 -06 
-5.07295269 -06 
-2.62662383 -06 
-1.38746418 -06 
-7.48296715 -07 
-4.12491527 -07 
-2.32661407 -07 
-1.34400124 -07 
-7.95556799 -08 
-4.82548647 -08 
-2.99750898 -08 
-1.90478644 -08 
-1.23631942 -08 
-8.18141629 -09 
-5.50942522 -09 
-3.76826194 -09 
-2.61313965 -09 

0 
We consider the integral 

i exp(--2p2) M(P) @p,4~> @d(p) ap; 

by changing to spherical coordinates we obtain 

s ev(--2p2) MP) @,~z(P) @,z(P) 4 

= 
6zzs (214J 1) I om 

exp(-2p2) M(p) p2z+2LL+11”(p2) Ly”2(p2) dp (19) 

= --s,,~b:,/ . (20) 

The integral on the right in (19) can be evaluated numerically using the FORTRAN 
subroutine CADRE which uses cautious adaptive Romberg extrapolation; see Ref. [5]. 
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Guassian quadrature is very poor since the integrand is very oscillatory. However, 
this can become very expansive as r and 1 increase. 

The integral (19) (or (20)) can be written in a closed form which enables efficient 
numerical computation for a large range of values of I, r, and r’; See [9, IO]. Using 
the notation of [9], (20) may be written as 

k=O 
z. (a + l) Oak, (21) 

where 

A = 277 2112r(l + r’ + $) 
(21+ l)p+T'+l+l ’ (22) 

@ - w?J - k> 1 
Tk+l = 2(k + l)(y + k) Tk ’ To = r! (r’ - r)! ’ 

2(S - 2k - a) 
ua+lmk = (27 + 4k + 2a + 1) Oak ’ Oak = (2k + y - #;(2k + y - 4) ’ (24) 

p=2(1+r)+l, y=r’--+I, 8=1+2r, (25) 

for r < r’. Interchange r and r’ in (21)-(25) for r’ < r. This computation was originally 
done by Pekeris et al. [9]. Equation (18) now takes the form 

$, a,~1((X~/02)[rl, r’Z] + (X + 1) bb,.,} = 0, r, I = 0, I,... . (26) 

For a given value of 1, the vanishing of the determinant of (26) determines the eigen- 
values h,r of (8). 

Writing, for a given value of I and r, r’ = 0, l,..., N < +co, 

A’ = @:d, ) 

Bz = - (3 [rl, r’l] + b:,.#), 

az = (wz), 

(28) 

(29) 

Eq. (26) becomes a generalized eigenvalue problem of order N, for each I, 

The matrices AZ and Bz are negative and positive definite, respectively. It is observed 
that the off-diagonal terms of AZ and Bz decay so rapidly that, for the expansion (13), 
a’ should be of order 30 x 1. Although N may be larger than 30, only the first 30 
components of each eigenvector az need be retained for the expansion. 
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The method used to solve (30) consists of four parts: (1) Perform Cholesky decom- 
position of B1 into LzLzT, where Lz is lower triangular. The composition Lz-lAzLzT-l 
is performed, resulting in a symmetric matrix. (2) Reduce the symmetric matrix 
obtained in (1) to a symmetric tridiagonal matrix using accumulating orthogonal 
similarity transforms. (3) Compute eigenvalues and eigenvectors of the symmetric 
tridiagonal matrix obtained in (2) by the implicit QL method. (4) Form eigenvectors 
of (30) by back transforming those obtained in (3); see [14]. 

The eigenvalues &I and coefficients arzlc have been computed for I = 0, l,..., 11; 
I = 0, l,..., 56; and k = 0, l,..., 29; see [l 11. The computing time was about 1 hour 
on a CDC 7600. Much of the computing time was used in evaluating the elements of 
the matrices AZ and Bz. This greatly expands the original table computed Pekeris 
et al. [l]. In Table I a sample of the eigenvalues and coefficients are presented for 
1 = 0, 1; r = 0, 1, 2, 3; and k = 0, I,..., 29. 

The principal source of error in computing the eigenvalues and coefficients arises 
when the series in (26) is truncated to form a generalized eigenvalue problem of finite 
order, represented by (30). A disadvantage of this method is the difficulty in ascertain- 
ing its accuracy without repeating the complete calculation with a larger determinent. 
The successive determinant approach and the computation of the residual in (26) 
was used to determine the accuracy. For I = 0, l,..., 11; I = 0, l,..., 56; and k = 
0, l,..., 29 (and in Table I) the eigenvalues h,, are correct to it + 8 significant figures, 
where 10n-l < / X,.1 1 < IO”, and the coefficients are correct to nine significant 
figures. 

The program as well as the computed eigenvalues and coefficients are on punched 
cards and are available from the author. 
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